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On the effective indenter shape used in the analysis of nanoindentation

unloading curves
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Nanoindentation experiments have become a com-
monly used technique to investigate mechanical prop-
erties of thin films and small volumes of materials. Ef-
fective indenter shape concept was introduced by Pharr
and Bolshakov [1] to explain the nanoindentation un-
loading curves. They assume a certain pressure dis-
tribution and use linear elasticity theory to obtain the
deformed surface profile. The effective indenter shape
is derived from the deformed surface profile and rep-
resented by a power-law formula. Nanoindentation un-
loading curves are explained through Sneddon’s solu-
tion [2] corresponding to this formula. However, their
interpretation of the relationship between the pressure
distribution and the effective indenter shape is not cor-
rect. Similar to Pharr and Bolshakov [1], we limit our
discussions to the linear theory of elasticity and only
uniform pressure distribution is considered.

We consider the deformation of a flat elastic half-
space (z ≥ 0) under a certain pressure distribution,
p(r ), over a circular surface region (0 ≤ r ≤ a and
z = 0). The problem is considered in the linear the-
ory of elasticity and the half-space is assumed to be
isotropic and homogeneous. The following equations
give the relevant displacement and stresses for the half-
space. The vertical component of the displacement is
denoted by uz, and the stress components have two sub-
scripts corresponding to the appropriate coordinates. E
and ν are Young’s modulus and Poisson’s ratio of the
half-space.

As Fig. 1 shows, the boundary conditions for the
half-space at z = 0 are

τzr = τzθ = 0, (0 ≤ r < ∞) (1)

σzz = 0, (r > a) (2)

σzz = p(r ), (0 ≤ r ≤ a) (3)

The deformed surface profile is given in the linear the-
ory of elasticity as [3]
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where

K (k) =
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dθ, (0 ≤ k < 1)

(complete elliptic integral of the first kind).
For a uniform pressure distribution, Equation 3 be-

comes σzz = q and Equation 4 is simplified as

uz(r ) = 4(1 − ν2)qa

π E
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)
, (0 ≤ r < a) (5)

where

E(k) =
∫ π

2
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√
1 − k2 sin2 θdθ, (0 ≤ k ≤ 1)

(complete elliptic integral of the second kind).
One of the assumptions in the linear theory of elas-

ticity is that the displacement-gradient components are
small compared to unity, i.e., the theory is valid only
for small strains and small rotations. In the following
discussion, we will check whether or not Equation 5
satisfies the small rotation condition.

From Equation 5, we have the rotation of the sur-
face normal vector (see Fig. 2) within the loading area
as

θ (r ) = arctan

(∣∣∣∣duz(r )
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)

, (0 ≤ r < a) (6)

When r → a−, K (r/a) → ∞ and θ (r ) → 90◦, i.e.,
near the edge of the loading area, the surface normal
rotation is not small. This violates the small rotation as-
sumption in the linear elasticity theory. From this, we
conclude that Equation 5 is not valid near the edge of
the loading area.

Further investigation shows that whether or not
Equation 5 is valid in other areas of the loading region
depends on the ratio, (1 − ν2)q/E . We consider three
materials used by Pharr and Bolshakov [1] (Table I).
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TABLE I Material properties used by Pharr and Bolshakov [1]

Material E (GPa) H (GPa) ν (1 − ν2)H/E

Soda-lime glass 70.00 5.90 0.230 0.0798
Sapphire 403.00 26.90 0.234 0.0631
Fused silica 72.00 8.40 0.170 0.1133

Figure 1 Axisymmetric normal loading on a circular surface area of an
elastic half space.

Figure 2 The rotation of the surface normal vector.

Following the same procedure as Pharr and Bolshakov
and replacing the uniform pressure (q) by the mate-
rial hardness (H ), we have the corresponding rota-
tion of the surface normal for each material shown in
Fig. 3.

From Fig. 3, Equation 5 is clearly not valid for soda-
lime glass, sapphire and fused silica for most of the
loading areas. Thus, the ratio, (1 − ν2)q/E , has to be
small enough in order to satisfy the small rotation con-
dition.

Summarizing the discussions, we have that
Equation 5, a result from the linear elasticity theory,
is not valid near the edge of the loading area. To make
it valid in other regions of the loading area, the ratio
(1 − ν2)q/E has to be small enough.

According to Pharr and Bolshakov [1], the ef-
fective indenter shape corresponding to the uniform

Figure 3 θ (r ) vs. r/a for different materials. Solid line is for soda-lime
glass, dashed line is for sapphire and dotted line is for fused silica.

loading of a circular surface area of an elastic half-space
is

f (r ) = 4(1 − ν2)qa
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, (0 ≤ r ≤ a)

(7)

Equation 7 corresponds to Equation 5. In the linear
theory of elasticity, the pressure at the edge of the con-
tact area for a smooth indenter is either zero or infi-
nite [4]. The effective indenter described by Equation 7
is a smooth indenter. At the edge of its contact area,
the pressure cannot be kept at a non-zero finite value.
Thus, there is no corresponding effective indenter for
Equation 5. Even if Equation 5 is valid in the linear
theory of elasticity throughout the loading region, the
corresponding effective indenter, which gives a uniform
pressure distribution, will not exist.
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